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As applications become more 
complex, the quality of a relational 
DBMS's optimizer plays an increas­
ingly more important role in achiev­
ing good performance. This article 
looks at the features of an optimizer, 
and reviews the optimizers of 
several commercial products. 

In this installment of his regular 
contribution to lnfoDB, Chris Date 
looks the subject of composite keys 
in database design. He discusses 
when they should be avoided, and 
when they are useful. 

Ayear ago, we reviewed the IBM 
announcement of its AD/Cycle 
strategy. Since then, IBM has 
released the Repository Manager 
component of AD/Cycle, and has 
revealed details of the Information 
Model it is developing with its busi­
ness partners. We look here at the 
progress IBM has made over the 
past year, and review the issues fac­
ing potential users of the Repository 
and its associated CASE tools. 
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In this interview, Paul Winsberg 
discusses the status of AD/Cycle 
with Judy Teson, Manager of 
Market Strategy and Support at 
IBM's Santa Teresa Lab. 

As the industry moves towards the 
use of distributed processing and 
distributed database, there is in­
creasing need to maintain multiple 
copies of the same data at multiple 
locations. One effective way of 
doing this is via a snapshot facility. 
This article looks at the uses of snap­
shots, and presents the features 
required by such a facility. 

Database applications are becoming 
more complex, and many database 
users are finding that the classical 
method of controlling concurrent 
access to data using a locking 
protocol is creating performance 
problems. Here, we look at this 
issue, and review the strengths 
and weaknesses of some vendor 
solutions to this problem. 



Relallonal DBMS 
Optl•lzen: 
An Evaluatlon 

N othing can 
help more 
in estimating 

the performance of a 
Relational Database 
Management System 
(RDBMS) than a thor­
ough understanding 
of its optimizer. The 
optimizer also deter­
mines a good deal about 
a producfs functional­
ity - for example, is 
the DBMS appropriate 
for distributed database 
management, ad hoc 
query processing, 
batch processing, on­
line transaction process­
ing, 15 on-line complex 
processing, 16 or parallel 
processor exploitation? 
This article discusses 
the features of an opti­
mizer and reviews the 
optimizers of several 
commercial products. 

Evaluating and classifying optimizers 
.is a difficult task. There is probably 

n~ lin~ measure ~f how good an opti­
~r 1s, .bcc~use different applications 
will requrre different optimirer fea­
tures. In some cases, features that may 
be absolutely necessary Cor one DBMS 
would be irrelevant for others. If, for 
example, a DBMS supports only one ac­
cess method, then there is no need for 
the opt:imUer to be capable of evaluat­
ing and selecting between multiple 
access methods. 

In a recent article, 10 I explained some 
of the worl<lngs of optimirers, listed 
some features to look for when evaluat­
ing an optimizer, and proposed a simple 
scheme for classifying a DBMS based on 
the features of its optimizer. This arti­
cle extends that work and starts the 
process of applying it The goal is to 
develop a classification scheme and 
an ~ffi:pirical method of evaluating 
optimirers. 

In this article we review some of 
the features which an optimizer might 
have, and look at how these features 
are supported by nine products: 

• CA-DB (Release 1.4) 
• DB2 (Version 2 Release 2) 
• lnformix OnLine (Release 4.0) 
• Ingres (Release 6.3) 
• Oracle (Release 6.0) 
• Rdb/VMS (Release 4.0) 
• ShareBase m 
• Sybase SQL Server (Release 4.0) 
• Tandem NonStop SQL (Release 2) 

ldeatifyfng Optimizer 
Characteristics 

The optimizer's job is to produce 
an optimal processing strategy or 

query execution plan. As mentioned 
above, a set of objectives and features 
has already been developed 10 for evalu­
ating how efficient an optimizer is at 
this task. This article discusses this 
evaluation scheme in more detail. Note: 
The list of subfeatures under each of 
the numbered features in the evalua­
tion scheme below is not necessarily 
exhaustive. It is for the user to judge 
how many of these subfeatures must 
be supported by a product to satisfy a 
given feature. 

Table 1 sununari.zes how the nine 
products listed above satisfy the list of 
features in the evaluation scheme. The 
summary is taken from Reference 19 
which documents in more detail the ' 
support provided by each product 
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General Features 

1. Can the optimizer both interpret 
and compile plans at 1the user's 
discretion? 

• ~pt:ional interpretation1 and compila­
tion/ automatic recompilation 

• compiled only 

• interpretive only 

Interpretive systems alfe useful in 
ad hoc and dynamic Data Manipulation 
language (DML) applications, or per­
haps where the database schema or 
data population changes frequently. 
Compiled systems are efficient where 
the DML is known in advance of exe­
cution time and is not ex:pected to 
change. Some "interpreted systems" 
are highly efficient and use pre-existing 
optimized code (such as stored proce­
dures18), so that the line between inter­
preted and compiled sys.terns is not as 
clear as it once was. In addition it is 
possible for some interpreted systems 
to save their output as compiled code 
for later reuse. Be aware that there is 
a spectrum between pure compiled 
versus pure interpreted systems. 

2. Does the optimizer use cost 
functions a s compared to the less 
desirable cost indexes or general 
cost heuristics? 

• uses cost functions 

• uses cost indexes 

• uses general cost heuristics 

Cost functions arc used to estimate 
costs based on estimates of the amount 
of_ data to be manipulate•d by each oper­
ation - they generally use other statis­
tical factors in each cost function as 
well Cost indexes are muich simpler -
they just add an incremental cost for 
each ~of operation when producing 
a cost esllmate for a plan. Cost indexes 
may also be used as simple weighting 
factors and can be multi1plied by the 
amount of data estimated to be manipu­
lated by each operation. Cost heuristics 
involve selecting operations for execu­
tion based on a precedence list of the 
relative value of each operation. The oir 
erations may be high-level and based 
on DML expression or predicate syntax. 
Typically there is no qu~mtitative value 
associated with a processing strategy 
selected on the basis of •cost heuristics. 



3 . Is the optimizer insensitive to 
syntactic variations? 

• order of tables 

• order of columns in the WHERE clause 

• order of expressions/predicates 

• subquery versus join 

• EXISTS versus IN 

• COUNT versus EXISTS 

Sensitivity to the phrasing of an SQL 
query places a burden on users who 
are concerned with performance. On 
the other hand, it also allows the soph is­
ticated user to "manually" optimize the 
query. Syntax sensitivity is removed by 
conversion of an SQL statement to a ca­
nonical form and perhaps by flattening 
as well, so that phrases that are logi­
cally the same, except for syntax, are 
optimized in the same way. I have pre­
viously ref ered to an optimizer which 
determines the optimal plan according 
to the particular syntax used, as syntax­
based, but I now prefer syntax-driven 
or syntax-sensitive as more specific 
variants. 

4 . Can the optimizer perform a 
semantic transformation? 
If an RDBMS supports integrity con­
straints, it is possible to automatically 
transform semantically equivalent (as 
compared to syntactically equivalent) 
queries one into the other, or to infer 
additional restrictions and join condi­
tions from the integrity constraints. 
This can result in simplifying a query 
in ways that converting to canonical 
form and flattening cannot This im­
proves and gives more consistent per­
formance for queries that mean the 
same thing, regardless of how they 
are phrased. 

5. Does the optimizer recognize 
and use various "logical laws," i.e ., 
does it do syntax transformation? 

• transitivity of equi-joins and theta­
joins 

• equivalence of: not greater (less) than 
and less (greater) than or equal to 

• DeMorgan's Laws - equivalence of: 
not (a and b) and not a or not b; equiv­
alence of: not (a orb) and not a and 
notb 

• associativity 

• commutativity 

• distributivity 

If a WHERE clause contains equi-joins 
a•b and b .. c, and there are indexes on 
columns a and c, but not on column b, 
the join a=c is implied and can be per­
formed using the indexes on a and c. 
This is likely to reduce the number of 
rows that must be joined to b. Other 
useful laws include DeMorgan's Laws, 
the equivalence of not greater than and 
less titan or equal to, etc. Both scalar 
and relational operations should be con­
sidered. Ideally, users should not have 
to be logicians. For a good list of useful 
tautologies, see Reference 14. 

6. Does the optimizer optimize 
ove r all the standard predicate 
types and special extensions like 
data type conversion functions? 

• AND, OR, IN, UNION, BE'IWEEI\, LIKE. 
NOT, NUil.., 

• subqueries and correlated sub­
queries 

• data type conversion functions 

• scalar and aggregate functions 

For example, various optimizers fail 
to optimize predicates involving one or 
more of OR. UNION. IN. BElWEEN. LlKE. 
NOT, NULL, subqueries, correlated sub­
queries, functions, etc. The more of 
these supported, the greater the power 
of the language and its utility in mis­
sion critical applications. 

7. Is there a powerful EXPLAIN-like 
facility and means for using the 
information it provides? 

• shows the internal or coded format 
of a plan 

• shows plans considered, but not 
selected 

• shows graphical display of a plan 

• shows textual explanation of a plan 

• has direct means to influence the 
optimizer (i.e., the user can select 
a particular plan, or can specify the 
order in which tables are processed 
and the indexes to be used) 

• has the indirect means to influence 
optimizer (e.g., by setting statistics) 

An EXPLAIN facility allows the user to 
obtain a description of the access plan 
that the optimizer has selected for the 
query. This can be extremely useful in 
performance optimization if the user 
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has some means to influence the opti­
mizer. Some DBMSs providle a direct 
means of influence (e.g., telling the opti­
mizer which access plan to use) and 
others an indirect means l[e.g., modify­
ing the syntax of the query or modify­
ing indices). These features are needed 
in production MIS shops. 

8. Is the optimizer capable of 
handling arbitrarily·co01plex 
queries (i.e. what are its 
limitations)? 

• maximum number of tables 

• maximum number of joins 

• maximum number of subquerics 

• maximum depth of nested subqueries 

• maximum query size 

• maximum number of columns in a 
query or SELECT list 

For example, it is not un common to 
see the number of tables allowed in a 
query restricted to sixteen . However, 
some optimizers effectivelly "give up" 
when the number of table:s in a join is 
as few as five or six. For OLCP and ad 
Jwc decision support applications, this 
is unacceptable. 

Access Method Support 

9. Is the optimizer capable of 
manipulating the order of 
operations? 
The order in which SQL operations are 
executed can determine the size of in­
termediate results. If the optimizer 
does not attempt to compute or keep 
track of intermediate results, it can not 
evaluate the order dependlence of opera­
tions. The correctness of cost estimate 
results and the selected plan is, there­
fore, suspect 

1 O. Does the optimizer evaluate 
the various join methO<lls available 
effectively? 

• supports multiple join methods 

• evaluates multiple join methods 

The difference in cost 0 1f sort-merge, 
index only, nested loop, and partitioned 
hash join methods can be considerable. 
If the optimizer treats all joins equally 
or fails to evaluate a partic:ular method 
properly, anomalous performance 
behavior results. 



11. Does the optimizer select an 
appropriate sorting algorithm? 

• supports multiple sorting algorithms 

• evaluates cost of sorting algorithms 

Each sorting algorithm has advan­
tages and disadvantages. For example, 
a Quicksort becomes embarrassingly 
slow when faced with already sorted 
data. If the optimizer uses a single 
sorting algorithm, it should be one for 
which such anomalous results do not 
occur, or the conditions should be rec­
ognized so that the algorithm will not 
be applied inappropriately. 

12. Does the optimizer recognize 
inter- and intra-table clustering in 
evaluating the cost of a query? 

• inter-table clustering 

• intra-table clustering 

The optimizer should, for example, 
recognize the cost advantage of intra­
table clustering (i.e. the optimization of 
physical storage record order for a sin­
gle table) for sorted retrievals or range 
queries. Similarly, it should recognize 
that inter-table clustering (i.e., storing 
rows from two or more tables physi­
cally together) may be advantageous 
when a primary key join on the 
clustered tables is required. It is a 
disadvantage, however, when only one 
of the clustered tables is accessed. 

13. Does the optimizer take 1/0 
bandwidth into account? 

Not all disk drives are created equal, 
and, therefore, some means of factor­
ing in disk drive performance is advan­
tageous, preferably at configuration 
time. The administrator might put rota­
tional speed, latency, and mean transfer 
rate in a table for use by the optimizer 
whenever a drive or other storage 
medium is added to the system, or the 
system might monitor drive perfor­
mance automatically. For an extreme 
example, consider the ineffectual use 
of a RAM disk drive if it is treated as a 
standard disk drive. 

14. Does the optimizer evaluate 
the advantage or cost of buffering? 

• recognizes available buffer space 

• differentiates input/ output/interme­
diate processing buffer space 

• evaluates cache/buffer management 
costs 

• takes disk paging into account 

All systems have limited buffer 
space. If the optimizer assumes ef fec­
tively unlimited buffer space, the cost 
estimate will sometimes be too low due 
to paging. On the other hand, if it ig­
nores the possibility of caching and 
buffer management, the cost estimates 
will be too high. The cost function 
should represent the buffer manage­
ment algorithms available. 

15. Does the optimizer take into 
account the costs of transaction 
management, journaling, 
consistency enforcement, and 
concurrency? 

• transaction management 

• journaling 

• consistency enforcement 

• concurrency 

The costs of setting and resetting 
locks, and of resource waits will contrib­
ute to the overall cost of executing a 
query. Statistics such as the probability 
of deadlocks, average resource wait, 
etc., based on number of concurrent 
users should be factored in. In most 
cases, these costs are constant for all 
plans. However, for distributed optimi­
zation, and for optimizers that optimize 
across statements within a transaction, 
the order of these operations can affect 
the overall cost. These issues are im­
portant in OLCP and OLTP applications. 

Index Support 

16. Does the optimizer use 
different kinds of indices 
effectively? 

• uses different types of indices 

• evaluates plan cost by type of index 

Various indexing methods exist, 
each of which has different uses (and 
may have a different storage struc­
ture) . For example, a hash index is 
better for single record access, while a 
B-tree index is better for finding ranges 
of values. Indices can be made ineffec­
tual by poor optimizer evaluation, and 
considerable care in index design will 
be required to compensate for this. 

1 7. Does the optimizer recognize 
potentially useful indices in all 
reasonable cases? 

• when a leading partial index value is 
specified 
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• when a trailing partial index value is 
specified 

• when not equal to a partial index 
value is specified 

• when (part of) an index. value occurs 
in any function 

• when (part of) an index. value occurs 
in an aggregate function 

• when (part of) an index value occurs 
in an invertible functiorn 

An optimizer might not always 
recognize the usefulness of an index. 
If a composite index is defined on three 
columns of a table, and only the first 
two are mentioned in a query, the opti­
mizer may or may not reoognize that 
the columns form part of an index. If a 
product supports breadth first search­
ing of an index, then ihe.k~ading col­
umns of a composite index need not be 
known for the index to be useful. Some 
optimizers do not recognize a column 
as belonging to an index i:f it is used in 
any computation or a function. Others 
will not use indices on a column if the 
column occurs in certain lkinds of com­
parison operations such a:s "not equal" 
- if "not equal" serves to exclude all 
data except that in a narrow range or 
ranges of values of an indcexed column, 
the index can be used to eliminate an 
unnecessary relation sca111. 

18. Can the optimizer use or at 
least deal with multiple: indices? 

• uses multiple indices to reduce data 
1/0 

• uses multiple indices to perform an 
index-only join 

• uses at least one index if useful, 
regardless of how many exist 

An effective optimizer wm not only 
use multiple indices, but will also at­
tempt to perform an "index join," 
"union," or "intersect" wh·ere possible. 
The idea is to access only those pages 
referenced by all relevant indices. 

19. Can the optimizer create useful 
indices automatically? 

• creates an index on large intermedi­
ate results 

• may create a temporary index if 
useful 

• may create a permanernt index if 
useful 



When a potentially useful index does 
not exist, some optimizers will create 
one, assuming that the cost of creating 
the index is less than processing the 
alternate plans. Typically, this will be 
a temporary index, disappearing after 
the statement is processed. However, it 
is possible that knowledge of usage pat­
terns may be used in deciding the cost 
of creating a permanent index. 

For example, heavily used stored 
procedures or repeated queries in a 
read intensive environment may bene­
fit from such indices. Similarly, sorting 
or creating temporary indices on inter­
mediate results may be beneficial. This 
can be important in processing very 
large base tables, and in OLCP, batch, 
and decision support applications 
where large results tables are more 
common. 

20. Is the optimizer capable of 
using multi-table indices? 

• supports multi-table indices 

• takes multi-table indices into account 

Some systems provide a mechanism 
for creating a single index on the col­
umns in multiple tables. This improves 
join performance and can be used for 
referential integrity enforcement. The 
optimizer should not only recognize 
when these indices are useful, but 
should be able to use the index for the 
lookup of keys from either table. 

21. Can the optimizer respond to 
user created index and access 
methods? 

• supports user created or specified 
access methods 

• supports user created or specified 
index methods 

• takes user created or specified 
access methods into account 

• takes user created or specified index 
methods into account 

A few RDBMSS allow the user to spec­
ify index methods and access methods 
as user exits (e.g., Ingres, Starburst). 
These are useful in creating foreign 
DBMS gateways, and for dealing with air 
plications with special data (e.g., CAD). 
It is important that the optimizer recog­
nize these extensions. If it does not. 
they are of little use unless perfor­
mance is unimportant. 

22. Does the optimizer handle 
nulls properly? 

• index can be used even if a column 
can contain NULLs 

• optimizes IS NULL and IS NOT NULL 
restrictions 

• optimizer recognizes how NULLS 
affect transformations (i.e., it under­
stands when to apply three-valued 
logic) 

Some optimizers refuse to use any 
index (not just the primary key index) 
on a column that can contain nulls. 
Other optimizers can not optimire a 
restriction that involves NULLS (i.e., IS 
NULL and IS NOT NULL). A preferred air 
proach is for the optimizer to recognize 
when it can use the richer two-valued 
logic and when it must restrict optimiza­
tion techniques to those allowed by 
three-valued logic. 

Statistics 
23. Is the optimizer sensitive to 
table and index statistics? 

• cardinality (number of distinct table 
rows) 

• rows per physical page 

• number of data pages for a table 

• percentage of total pages occupied 
by the table 

• number of index pages 

• index selectivity 

Some products keep track of the 
number of rows in a table. Others re­
cord the average number of rows per 
page, number of pages per table, per­
centage of total pages, and the number 
of index pages. The selectivity of an 
index is also important This statistic 
tells the optimizer the number of rows 
in a table for each value in the index. 
Some statistical optimizers rely entirely 
on these statistics for optimization. 

24. Does the optimizer keep track 
of data value distributions? 

• user-managed histograms 

• automatic histograms 

• multi-modal distributions 

• skewed distnbutions 

• maximum column value 

• minimum column value 
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The cardinality of a table, and the 
maximum, minimum, aind average 
value for a column are useful for heuris­
tic measures. A few database products 
maintain fairly sophisticated statistics 
about the distribution of data values in 
a table. This allows the optimizer to ana­
lyze the number of disk I/Os required 
to satisfy a query more effectively. If 
the optimizer assumes :a uniform distri­
bution of data values across all table 
pages, but the distributiion is in fact 
skewed or multi-modal, then the actual 
number of pages required to access 
data can be very different (either 
higher or lower) than the estimate. 
Keeping minimum and maximum 
values is not sufficient to distinguish 
between uniform and non-uniform dis-­
tributions. Keeping just the minimum 
and maximum value of a column can 
also give false informatiion to the opti­
mizer, if nulls are stored as the highest 
or lowest value. 

25. Can the optimizer estimate the 
number of disk page1s that must be 
accessed? 

• uses a cost function 

• uses a cost index 

• uses a general heuristic 

The cost of disk I/O can not be com­
puted if the optimizer can not estimate 
the number of data pages that must be 
accessed, i.e., it can not use a cost func­
tion. Optimizers that do not have this 
capability typically use .a cost index. 
rather than a cost function, to estimate 
disk 1/0. A cost index is a numeric 
value given to a particular operation, 
regardless of the amount of data that 
must be processed Thie sum may then 
be scaled according to the amount of 
data. The result is optimization based 
on gross statistical or theoretical as-­
sumptions. This is similar to measuring 
the health of the U.S. ecconomy based 
on the Dow Jones Indu:strials (an eco­
nomic index) instead olf computing the 
GNP, trade deficit, and inflation. 

26. Does the optimiz:er provide a 
mechanism for updaJting statistics? 

• provides automatic updates 

• provides means for on demand 
updates 



• provides triggered updates (e.g., 
when tables change size by a certain 
percentage) 

• continuous updates 

• scheduled updates 

• requires manual updates 

Optimizers can update statistics 
continuously, automatically, manually, 
on a scheduled interval, by a trigger 
(e.g., when new extents are allocated, 
new indices are created, etc.) . If 
manual updating of statistics is allowed 
it should be handled through a utility 
that protects the user from serious 
errors. Some optimizers allow the up­
dating of statistics to be restricted to a 
specific table or column. Others permit 
the DBA to directly update statistics 
using DML operations. Both of these 
options are dangerous and can lead 
to problems. The most appropriate 
method for updating statistics will de­
pend largely on usage patterns and 
data value distributions. 

27. Does the user have controls to 
manage the cost of obtaining 
statistics from the database? 

• sampling can be used 

• a sample database can be used 

• uses continuous update of cached 
statistics 

• uses continuous update of non­
cached statistics 

• uses table scan 

When a database is very large, the 
cost of updating the statistics can be­
come exorbitant. One solution to this 
problem is to produce the statistics by 
sampling the data. A variation is to gen­
erate the statistics from a sample or 
test database. Similarly, statistics can 
be updated continuously, either for all 
activity on a database or on a random 
sampling basis. Up-to-date statistics are 
critical for performance, particularly in 
a distributed DBMS environment. 

Efficiency Features 

28. Can access plans be saved or 
cached? 

• for the duration of a transaction 

• for the duration of a program or 
process 

• until the DBMS is restarted 

• permanently 

• manually (i.e., at user request) 

• automatically 

Access plans can be cached for re­
peated queries, eliminating the over­
head of generating an access plan 
when an application uses the same 
query repeatedly. Similarly, database 
procedures generate access plans 
which are stored in the database on the 
first invocation. The optimizer should 
provide a means for checking the 
validity of stored or cached plans, and 
should be capable of regenerating a 
plan automatically if need be. 

29. Can the optimizer recognize 
and re-use parts of an existing 
plan? 

• within a statement 

• within a transaction 

• within an application 

• belonging to the same user process 

• across applications and users 

• across cached plans 

• across stored plans 

The optimizer might maintain a 
cache of the plans it has recently 
executed. If a new plan needs to be 
selected, it can try to find an existing 
equivalent plan. Failing this, it should 
look for parts of the plan which have 
already been computed and optimized. 

30. Does the optimizer recognize 
invalid plans or invalid partial 
plans? 

• plans 

• parts of plans 

• when indexes are added 

• when indexes are dropped 

• when statistics change significantly 

• when a table is dropped 

• on user request 

This is particularly important for 
compiled systems. Changes to the sta­
tistics or to the database schema can 
result in a plan (or partial plan) becom­
ing invalid. Likewise, a minor variation 
on a plan (or partial plan) may make it 
invalid, for example, when substituting 
a wildcard for a constant in a boolean 
comparison search condition. 
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Aggregate functions occur frequently 
in OLCP and decision support applica­
tions. There are several techniques for 
optimizing aggregate functions. For ex­
ample, an "unnesting technique" can. be 
used to separate the aggregate function 
from the rest of the statement. Index­
only access is also possible when evalu­
ating some aggregate functions. 

32. Does the optimirer recognize 
repeated occurrences of an 
aggregate function? 
If an aggregate function occurs repeat­
edly in a query, or if the arguments to 
different aggregate functions (e.g., 
sum(x) and avg(x)) recur, they need 
be evaluated only once. This means 
that the optimizer must recognize the 
repeated occurrence of potentially com­
plex subtrees in the plan, and cause 
them to be evaluated only once. 

33. Is dynamic selection of plans 
supported at runtime? 
If multiple plans are generated for the 
same query, the optimizer can switch at 
runtime between plans based on a maxi­
mum allowed real cost (or switching 
threshold) for a particular plan. In this 
way, if the real cost at runtime exceeds 
the switching threshold, the optimizer 
can switch to a new, potentially better 
plan. It is also possible for the plan 
switching to be based on the runtime 
values of dynamic SQL parameters. 

34. Can the optimizer optimize 
transactions as well as statements? 

• statements (local optimization) 

• transactions (global optimization) 

If it is possible for the optimizer to 
look ahead and see all the statements 
in a transaction (as may be the case in 
a database procedure or stored proce­
dure) , it may be possible to cache inter­
mediate results for use later in the 
same transaction, or to minimize the 
amount of disk I/O by scanning a clus­
tered table, even though some of the 
data will be used only by later state­
ments in the transaction. Some of the 
effect of "global" optimization can be 
obtained if intermediate results are 
cached routinely and the optimizer is 
capable of caching and recognizing par­
tial plans used by previous statements. 
This type of optimization could also be 
done for parts of a transaction, rather 
than the whole transaction. 
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CA-DB DB2 INFORMIX INGRES ORACLE ROB SHARE BASE SYBASE TANDEM 

General Features 

1. y compiled interpreted y interpreted interpreted y y compiled 
2. y y y y N(heuristics) y y y y 

3. y p y y N p y N p 

4 . y N N p N p y N p 

5. y p p p p y y p p 

6. y y y y p y y p p 

7. p y y y p y y y y 

8. y y y y y y y y y 

Access Method Support 

9. y y y y y y y y y 

10. y y N y y y y y y 

11. y N N N p y N N y 

12. p p p p p y p p p 

13. y N N N N N p N N 
14. y y y y N y y y N 
15. y N N N N N N N N 

Index Support 

16. y N p y y y p N N 
17. p p p y p y y p p 

18. y y p y y y p y N 
19. N N y y N p y p p 

20. y N N N y N N N N 
21. N N N N N N N N N 
22. y y y y N y y y y 

Statistics Support 

23 . y y y y N y y y y 

24. p p N y N p N y N 
25. y y y y N y y y y 

26. y y y y N y y y y 

27. y p N y N p p N p 

Efficiency Features 

28. p p N y p N y y p 

29. N N N y y N N N N 
30. p p p y N p p p p 

31. y y y y y y y y y 

32. y y N y y p y y N 
33. N p N N N y N N N 
34. N N N N N N N N N 

Artificial Intelligence Features 

35. y y y y p y y y y 

36. N N N N N N N N N 
37. p N y y N p N N p 

38. N N y y N N N N N 
39. N N N y N N N N N 
40. p N N y N p p N y 

41. p N N y N N p N y 

42 . y N N y N N N N N 

Table 1 • Co111parison of nine co111111erclal optl111lzers 
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Artificial Intelligence Features 
35. Does the optimizer use 
heuristics to eliminate plans? 

• prior to generating all possible plans 

• prior to evaluating all possible plans 

Heuristics can be used to eliminate 
plans prior to cost function evaluation. 
During cost function evaluation, heuris­
tics can also be used to terminate the 
evaluation of the entire plan. These 
techniques allow optimizer time to be 
spent examining potentially more use­
ful plans. Note that this is different 
from using heuristics for cost estimates. 

36. Can the optimizer learn? 

• from usage patterns 

• from actual performance measure­
ments 

In some minimal sense, an optimizer 
learns if it collects and responds to sta­
tistics. Likewise, it also learns if it uses 
partial plans from previous optimization 
efforts. However, stronger forms of 
learning are possible. For example, the 
optimizer could compare actual and 
estimated costs to adjust its cost esti­
mate algorithms. Search heuristics 
could be used to reduce costs - see 
Pierls, Reference 12. Usage patterns 
could be used to dictate the spreading 
of data across devices or even across 
data pages. The frequency and amount 
of data updating could dictate the opti­
mal extent size when new pages need 
to be allocated. The frequent access 
of a column could lead to automatic 
creation of indices. Automatic reorgani­
zation of the data is possible when a 
particular processing order is common, 
or when fragmentation exceeds a cost 
threshold. Another potentially fruitful 
area is the use of genetic algorithms -
see Reference 17. 

Parallel Processing ancl 
Distributed Support 

37. Is the optimizer capable of 
computing distributed cost 
functions? 

• routing 

• network bandwidth 

• node CPU speed 

• parallel query processing 

• parallel disk 1/0 

When data is distributed, factors 
such as the routing of the retrieved 
data, network bandwidth, node CPU 
speed, and possible concurrent or 
parallel processing of the decomposed 
query, all become important in comput­
ing costs. These factors, as well as the 
normal local statistics must be available 
to the global optimizer. How these sta­
tistics are sent from the local database 
to the global optimizer is also impor­
tant (e.g., by manual update, automatic 
update, on demand, or triggered by 
an event such as storage space alloca­
tion, etc.). 

38. Does the optimizer address 
both local and global factors? 

• local (single node factors) 

• global (multiple node factors) 

• both 

Even if the optimizer performs 
global optimization in a distributed envi­
ronment, it should still optimize local 
queries, and not depend on a plan dic­
tated by the global phase. If the opti­
mizer does both local and global 
optimization (as with Ingres/Star, for 
example), the method by which these 
phases interact (i.e., which is done first, 
and how the costs are propagated be­
tween the phases), and the method by 
which statistics are updated are both 
important. Note that this use of the 
terms local and global is different from 
that used in question 34 above. 

39. Can the user control how the 
global optimizer obtains access to 
local statistics? 

• manually (separate command or 
utility) 

• on demand 

• on a user-defined schedule 

• statistics are replicated on each node 

Access to local statistics by a global 
optimizer could be managed manually, 
on demand, or on a user-defined sched­
ule. Global optimization requires not 
only information about where data 
resides, and how best to route the nec­
essary data to the user, but also about 
how best to prepare that data for distrib­
uted access in the first place. 

lnfoDB 

40. Can the optimizer evaluate 
parallel 1/0? 

• for replication 

• for fragmentation 
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If replication and fragmentation are 
supported by the RDBMS, the optimizer 
might be able to use multiple disk 
drives and controllers to process the 
results in parallel. It is not necessary 
for the RDBMS to be distributed for this 
to be a benefit. 

41. Can the optimizer take 
advantage of parallel processing? 

• differentiates between parallel and 
sequential CPU costs 

• adapts to system configuration 
changes 

In a distributed system, which 
portions of a query are processed in 
parallel, and which must be processed 
sequentially, can have a major effect 
on the processing cost. If the optimizer 
does not model the system properly, 
parallel processing may be more costly 
than sequential processing on a uni­
processor machine. Processing may 
be done in parallel within query opera­
tions or across query operations. 
Again, it is not necessary for the RDBMS 
to be distributed for this to be a benefit, 
but multiple CPUs need to be available 
to the query processor. 

42. Does the optimizer compute 
the cost of semijoins? 
Semijoins are sometimes an effective 
means of performing joins where the 
data is distributed and network costs 
are significant. The cost of a semijoin 
should not be evaluated like that of a 
join. 

Classifying the Optimizer 
"l X Then attempting to evaluate an opti­
V V mizer, it is convenient to classify 

the DBMS according to the type of opti­
mizer provided. A scheme that I find 
useful is as follows: 

Class 0: There is no optimizer. 

Class 1: The optimizer is syntax driven 
or sensitive. It does not use statistics 
and uses either cost indices or heuris­
tics to determine the access plan. 

Class 2 : The optimizer is syntax sensi­
tive, but does use cost functions. It 
does not use statistics except perhaps 
to estimate table size. 



Class 3: The optimizer is syntax sensi­
tive, uses cost functions. and uses mini· 
mal statistics. 

Class 4: The optimizer is not syntax 
sensitive, uses cost functions and 
statistics. Facilities to influence the 
optimizer manually may be available. 

Class 5 : The optimizer is not syntax 
sensitive, uses cost functions, and uses 
extensive statistics, including those 
about the distnbution of data values. 
The user may be able to limit the 
search cost or to force an exhaustive 
search. 

Class 6: The optimirer is not syntax 
sensitive, uses cost functions, extensive 
statistics, and performs global optimiza­
tion in a distributed database environ­
ment 

These six classes are meant as a 
guide, no more. The classification as­
sumes that performance should not be 
influenced by syntax, that cost func­
tions are better than cost indices or sim­
ple heuristics, that statistics are useful, 
and that user facilities for controlling 
the optimirer are beneficial. 

It is important to understand that a 
particular optimizer may have some 
characteristics found in a higher class. 
Similarly, an optimizer in a higher class 
may still use the techniques found in a 
lower class optimizer, but will do so judi­
ciously. It may be that certain character­
istics, while not rated highly by the 
classification, will be acceptable none­
theless. For example, the fact that a par­
ticular DBMS optimizes only at compile 
time (as distinct from run or execution 
time) can justify its use of exhaustive 
search. If the optimizer is then able to 
re-use access plans or partial plans, this 
technique may not be particularly detri­
mental, even in an ad hoc environment 
Similarly, if the users of the DBMS are 
sophisticated and willing to keep in 
mind possible performance penalties 
from poorly phrased SQL, syntax sensi­
tive optimizers may be acceptable. 
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